Table 2. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

Til-NI	2.241 (4)	Til-Cll	2.3086 (15)
Til-Cl3	2.2910 (10)	Til-Cl2	2.3485 (10)
$\mathrm{Ni}-\mathrm{Til}-\mathrm{Cl} 3$	87.30 (8)	Cl 3 - $\mathrm{Ti} 1-\mathrm{Cl} 2$	173.17 (6)
$\mathrm{Cl}^{1}-\mathrm{Til}-\mathrm{Cl} 3$	91.23 (5)	$\mathrm{Cl} 3-\mathrm{Til}-\mathrm{Cl} 2$	90.36 (3)
$\mathrm{NI}-\mathrm{Til}-\mathrm{Cll}$	177.45 (13)	$\mathrm{Cl} 1-\mathrm{Til}-\mathrm{Cl} 2$	92.01 (4)
$\mathrm{Cl} 3-\mathrm{Til}-\mathrm{Cll}$	94.48 (5)	$\mathrm{Cl} 2-\mathrm{Til}-\mathrm{Cl}^{2}$	87.29 (5)
$\mathrm{N} 1-\mathrm{Til}-\mathrm{Cl} 2$	86.15 (8)		

Symmetry code: (i) $-x, y, z$.
The data collection nominally covered over a sphere of reciprocal space by a combination of five sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.3° in ω. The crystal-to-detector distance was 5.95 cm . Coverage of the unique set is over 95% complete to at least 26° in θ. Crystal decay was monitored by repeating the initial frames at the end of data collection and analysing the duplicate reflections. All H atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters $\left[U(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)\right.$, $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $\left.U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N})\right]$ using a riding model with $\mathrm{C}-\mathrm{H}($ methyl $)=0.98, \mathrm{C}-\mathrm{H}($ aromatic $)=0.95$ or $\mathrm{N}-\mathrm{H}=$ 0.88 Å.

Data collection: SMART (Siemens, 1995). Cell refinement: SMART. Data reduction: SAINT (Siemens, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL96 (Sheldrick, 1996b). Molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1120). Services for accessing these data are described at the back of the joumal.

References

Emeléus, H. J. \& Rao, G. S. (1958). J. Chem. Soc. pp. 4245-4250. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fleischer, H., Hensen, K. \& Stumpf, Th. (1996). Chem. Ber. 129, 765-771.
Hensen, K., Roßmann, H. \& Bensch, W. (1992). Z. Anorg. Allg. Chem. 610, 145-150.
Hensen, K. \& Wagner, H. B. (1976). Chem. Ber. 109, 411-414.
Hensen, K., Zengerly, Th., Müller, Th. \& Pickel, P. (1988). Z. Anorg. Allg. Chem. 558, 21-27.
Hensen, K., Zengerly, Th., Pickel, P. \& Klebe, G. (1983). Angew: Chem. Suppl. 9, pp. 973-984.
Lemke, A. (1996). Diplomarbeit, University of Frankfurt/Main, Germany.
Mazo, F. N., Bobilev, A. P. \& Troyanov, S. I. (1987). Vestn. Mosk. Univ. Khim. 28, 459-462.
Rao, G. S. (1960). Z. Anorg. Allg. Chem. 304, 176-180.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996a). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1996b). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Area-Detector Control and Integration Sofiware. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sobota, P., Utko, J. \& Lis, T. (1984). J. Chem. Soc. Dalton Trans. pp. 2077-2079.

Acta Cryst. (1997). C53, 1585-1588

trans-Dichloro(1,4,8,11-tetrazacyclotetradecane)cobalt(III) Chloride Tetrahydrate 0.47-Hydrochloride

Martha E. Sosa-Torres ${ }^{a}$ and Rubén A. Toscano ${ }^{b}$
${ }^{a}$ División de Estudios de Posgrado, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad
Universitaria, Coyoacán 04510, México, DF, México, and
${ }^{\text {b }}$ Universidad Nacional Autónoma de México, Instituto de Química, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-213, México, DF, México. E-mail: mest@ servidor. unam. $m x$

(Received 6 November 1996; accepted 19 May 1997)

Abstract

The crystal and molecular structures of the title compound, $\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right] \mathrm{Cl} .4 \mathrm{H}_{2} \mathrm{O} .0 .47 \mathrm{HCl}$, have been determined and establish that the trans- $\left[\mathrm{CoCl}_{2}-\right.$ (cyclam) $]^{+}$cations crystallize as the trans- $R S S R$ species. The Co atom occupies a crystallographic centre of symmetry and is in a tetragonally elongated octahedral coordinated array, comprising the four N atoms of the macrocycle and two Cl atoms. The chloride counterion exhibits statistical disorder, while one of the solvate water molecules also exhibits orientational disorder as a result of partial protonation. In the crystal packing, all possible hydrogen bonds are formed. The trans- $\left[\mathrm{CoCl}_{2} \text { (cyclam) }\right]^{+}$cations are stacked into columns along the \mathbf{b} direction forming channels which are occupied by the chloride counterion and the water molecules.

Comment

In studies of the details of the base-catalyzed substitution reactions of amine (aniono) cobalt(III) complexes, a number of systems have been found where the rate constants (k_{2}) for solvolysis of the amido conjugate base forms are of comparable magnitude with, or even significantly greater than, the rate constants $\left(k_{-1}\right)$ for the reprotonation of these forms (Lichtig, Sosa \& Tobe, 1984; Ahmed \& Tobe, 1974; Marangoni, Panayotou \& Tobe, 1973; Poon \& Tobe, 1968). The trans stable isomer of the dichloro(cyclam)cobalt(III) complex was the first example (Poon \& Tobe, 1968) for which it was shown that $k_{-1} \ll k_{2}$; in that study, the $R S S R$ configuration had been assumed, but no X-ray study had been reported.

In addition to the geometric (trans-cis) isomerism in which the ligand is flat or folded, it is necessary to take into account further isomerism, arising from the configuration of the coordinated amine N atoms. Moreover, as far as we know, this is the first example of
a single-crystal structure determination of a trans $-\mathrm{Co}^{\text {III }}$ complex derived from cyclam.

The study of the X-ray structure of the cis-dichloro(cyclam)cobalt(III) chloride complex was published as a footnote (Whimp, Bailey \& Curtis, 1970) and the configuration reported was $R R R R$ (SSSS). The only other complete structure analysis of octahedral cobalt(cyclam) complexes corresponds to cis-ethylenediamine(cyclam)cobalt(III) chloride (Lai \& Poon, 1976) and cis-oxalate(cyclam)cobalt(III) nitrate (Sovilj et al., 1994).
The structure reported here for the trans-dichloro(cyclam)cobalt(III) chloride complex, (I) (Fig. 1), confirms the original configuration assumption, $R S S R$, made by Tobe (Bosnich, Poon \& Tobe, 1965) by analogy with the structure of the trans-[NiCl_{2} (cyclam)] complex (Bosnich, Tobe \& Webb, 1965).

(I)

The trans-[CoCl_{2} (cyclam) $]^{+}$cation can be compared with the $\mathrm{Ni}^{\text {III }}$ (Ito, Sugimoto, Toriumi \& Ito, 1981) and the $\mathrm{Ru}^{\mathrm{II}}$ (Walker \& Taube, 1981) analogues, and also with $[\mathrm{Co}($ cyclam $)]\left(\mathrm{ClO}_{4}\right)_{2}$ (Endicott et al., 1977).
The $\mathrm{Co}^{\text {III }}$ ion resides at a crystallographic centre of symmetry and is surrounded by four N atoms of the cyclam in the equatorial plane and two Cl atoms occupying the axial positions of an octahedron. The mean value for the equatorial $\mathrm{Co}-\mathrm{N}$ bonds is 1.978 (4) \AA, whereas the $\mathrm{Co}-\mathrm{Cl}$ distance is 2.2524 (6) \AA. Slight deviations from ideal values for the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angles in the five-membered rings ($<90^{\circ}$) and six-membered rings ($>90^{\circ}$) are observed, causing a distortion from the square-planar coordination, producing a rectangle with sides of length 2.701 (3) and 2.889 (3) Å. Non-bonding

Fig. 1. The title compound showing the labelling of the non-H atoms. Primed atoms are generated by $\overline{1}$ symmetry. Anisotropic displacement ellipsoids are shown at 30% probability levels.
interactions within the cation cause a further distortion from a regular octahedral arrangement. The $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ axis is tilted $\left[1.5(1)^{\circ}\right]$ as a result of a $\mathrm{Cl1} \cdots \mathrm{H} 1$ contact (Table 3). As found in other cis and trans isomers of cyclam complexes (Forsellini, Parasassi, Bombieri, Tobe \& Sosa, 1986; Flores-Velez, Sosa-Rivadeneyra, SosaTorres, Rosales-Hoz \& Toscano, 1991), the corresponding $\mathrm{Co}-\mathrm{N}$ distances are shorter in the trans isomers.

The macrocyclic ring conformation can be described as the trans-III isomer of Tobe (Bosnich, Poon \& Tobe, 1965) with an RSSR configuration. The five-membered chelate rings adopt twist conformations, whereas the sixmembered chelate rings are in chair conformations.

The trans $-\left[\mathrm{CoCl}_{2} \text { (cyclam) }\right]^{+}$cations are stacked along the b direction and held together by $\mathrm{Nl}-\mathrm{H} 1 \cdots \mathrm{Cl}$ hydrogen bonds. The channels left by this arrangement are filled by the chloride ion (arising from the counterion of the complex and the hydrochloric acid used for crystallization) and the solvate water molecules (two of them appearing as partially protonated moieties) forming a rather complicated hydrogen-bonding scheme (Fig. 2 and Table 3) where all possible hydrogen bonds are formed. The crystal structure is stabilized by these weak interactions and they explain the low stability of the crystals.

Fig. 2. The crystal packing of $\left[\mathrm{CoCl}_{2}\right.$ (cyclam) $] \mathrm{Cl}$ viewed along the b axis.

Experimental

The trans- $\left[\mathrm{CoCl}_{2}\right.$ (cyclam) $] \mathrm{Cl}$ complex was synthesized according to the method of Bosnich, Poon \& Tobe (1965). (Found: C 32.8, H 6.5, N $15.3 \% ; \mathrm{C}_{10} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{CoN}_{4}$ requires C 32.8, H 6.6, N 15.3\%.) The nature of the $\mathrm{C} \mathrm{o}^{\text {III }}$ compound was confirmed by electron paramagnetic resonance (EPR) spectroscopy. The EPR spectrum of the compound showed no signal, as expected. Taking into account the high sensitivity of this technique, this can be taken as evidence of the diamagnetic purity of the $\mathrm{Co}^{\text {III }}$ species. The crystals were grown by slow evaporation of a dilute hydrochloric acid solution of the
compound. Intensities were collected on a sample mounted in a Lindeman glass capillary filled with mother liquor to prevent crystal decomposition.

Crystal data

$\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right] \mathrm{Cl} .4 \mathrm{H}_{2} \mathrm{O}$.-
Mo $K \alpha$ radiation
0.47 HCl
$M_{r}=454.81$
Monoclinic
$P 2_{1} / n$
$a=6.393(2) \AA$
$b=7.433(1) \AA$
$c=21.067(3) \AA$
$\beta=90.97$ (2) ${ }^{\circ}$
$V=1000.9(4) \AA^{3}$
$Z=2$
$D_{x}=1.509 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens P4/PC diffractometer
ω scans
Absorption correction: ψ scans (XEMP; Siemens, 1990)
$T_{\text {min }}=0.346, T_{\text {max }}=0.460$
3155 measured reflections
2914 independent reflections
$\lambda=0.71069 \AA$
Cell parameters from 44 reflections
$\theta=4-15^{\circ}$
$\mu=1.340 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.82 \times 0.62 \times 0.58 \mathrm{~mm}$ Green

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.110$
$S=1.072$
2912 reflections
159 parameters
H -atom parameters
constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0509 P)^{2}\right.$
+0.2907 P]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=-0.040 \\
& \Delta \rho_{\max }=0.605 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.975 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \\
& \quad \text { SHELXL93 (Sheldrick, } \\
& 1993 \text {) } \\
& \text { Extinction coefficient: } \\
& 0.084 \text { (4) } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U^{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Co	1/2	0	1/2	0.0212 (1)
Cll	0.23878 (7)	0.20309 (7)	0.49486 (3)	0.0321 (2)
$\mathrm{Cl} 2 \dagger$	0.1763 (2)	0.2511 (2)	0.68061 (6)	0.0666 (5)
N1	0.7152 (3)	0.1904 (3)	0.50221 (10)	0.0296 (4)
C2	0.7181 (4)	0.2728 (4)	0.56615 (14)	0.0403 (6)
C3	0.6882 (4)	0.1251 (4)	0.61340 (13)	0.0400 (6)
N4	0.4982 (3)	0.0222 (3)	0.59369 (9)	0.0307 (4)
C5	0.4729 (4)	-0.1408 (4)	0.63270 (13)	0.0430 (6)
C6	0.2774 (5)	-0.2452 (4)	0.61388 (15)	0.0473 (7)
C7	0.2843 (4)	-0.3275 (3)	0.54865 (14)	0.0405 (6)
Ol	-0.0108 (4)	-0.0838 (5)	0.7420 (2)	0.0704 (8)
O 2	0.8588 (5)	-0.4502 (5)	0.6962 (2)	0.0836 (9)

[^0]Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D - $\mathrm{H} \cdots \mathrm{A}$	D-H	H \cdots A	D.. A	D-H. \cdot A
$\mathrm{N} 1-\mathrm{HI} \cdots \mathrm{Cll}^{1}$	0.84 (3)	2.70 (3)	3.355 (2)	137 (2)
$\mathrm{Ol}-\mathrm{HlA} \cdots \mathrm{Cl} 2$	0.89 (5)	2.18 (5)	3.058 (4)	169 (6)
$\mathrm{OL}-\mathrm{HIB} \cdots \mathrm{O}^{\text {in }}$	0.69 (5)	2.08 (6)	2.779 (5)	174 (6)
$\mathrm{Ol}-\mathrm{HIC} \cdot \mathrm{Cl} 2^{\text {iii }}$	0.70 (5)	2.24 (5)	2.936 (3)	172 (6)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{C} \cdot \mathrm{Cl} 2^{\text {iv }}$	0.78 (4)	2.25 (4)	3.030 (4)	176 (6)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{D} \cdots \mathrm{Ol}^{1}$	0.73 (4)	2.29 (5)	3.002 (5)	165 (6)
N4-H4. . Cl 2	0.88 (3)	2.48 (3)	3.257 (2)	148 (2)

Symmetry codes: (i) $1+x, y, z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iv) $1+x, y-1, z$.

The site-occupation factor and the thermal displacement factor of chloride counterion Cl 2 were refined by keeping one of them constant and varying the other alternately until they converged to the values indicated. At an advanced anisotropic refining step, three well defined electron-density residues were located surrounding the water O 1 atom. Restrained refinement [$\mathrm{O}-\mathrm{H} \sim 0.85(5) A$], as for the chloride ion, showed that the occupation factors for those H atoms add up to 2.22 (13). In the final model, a fixed site-occupation factor of 0.7446 and an isotropic displacement parameter $1.2 U_{\mathrm{eq}}$ of the parent O atom were used for each H atom in the partially protonated water molecule.

Data collection: XSCANS (Siemens, 1993). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93.

The authors thank DGAPA-UNAM for financial support of this research through the research project IN213794.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1254). Services for accessing these data are described at the back of the journal.

References

Ahmed, E. \& Tobe, M. L. (1974). Inorg. Chem. 13, 2956-2960.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Bosnich, B., Poon, C. K. \& Tobe, M. L. (1965). Inorg. Chem. 4, 1106-1109.
Bosnich, B., Tobe, M. L. \& Webb, G. A. (1965). Inorg. Chem. 4, 1109-1112.

Endicott, J. F., Lille, J., Kuszaj, J. M., Ramaswamy, B. S., Schmonsees, W. G., Simic, M. G., Glick, M. D. \& Rillema, D. P. (1977). J. Am. Chem. Soc. 99, 429-439.

Flores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. \& Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243-3247.
Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. \& Sosa, M. E. (1986). Acta Cryst. C42, 563-565.

Ito, T., Sugimoto, M., Toriumi, K. \& Ito, H. (1981). Chem. Lett. pp. 1477-1478.
Lai, T. F. \& Poon, C. K. (1976). Inorg. Chem. 15, 1562-1566.
Lichtig, J., Sosa, M. E. \& Tobe, M. L. (1984). J. Chem. Soc. Dalton Trans. pp. 581-585.
Marangoni, G., Panayotou, M. \& Tobe, M. L. (1973). J. Chem. Soc. Dalton Trans. pp. 1989-1994.
Poon, C. K. \& Tobe, M. L. (1968). Chem. Commun. pp. 156-158.
Sheldrick, G. M. (1990). SHELXTLJPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). XEMP. Empirical Absorption Correction Program. Version 2.10b. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Siemens (1993). XSCANS Users Manual. Version 2.1. Sicmens, Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sovilj, S. P., Vuckovic, G., Babic, K., Matsumoto. N., Avramov-Ivic, M. \& Jovanovic, M. (1994). J. Coord. Chem. 31, 167-179.

Walker, D. D. \& Taube, H. (1981). Inorg. Chem. 20, 2828-2834.
Whimp, P. O., Bailey, M. F. \& Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956-1963.

Acta Cryst. (1997). C53, 1588-1590

(Imidazole- N^{3})(N -salicylidene- α-amino-isobutyrato-O,N, O^{\prime})copper(II) Dimer \dagger

Salam A. Warda
Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie.uni-marburg.de
(Received 27 March 1997; accepted 3 June 1997)

Abstract

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$, adopts a square-pyramidal $\mathrm{Cu}^{1 I}$ coordination with the tridentate N-salicylidene- α-aminoisobutyrato Schiff base dianion and the imidazole ligand bound in the basal plane. The apex of the pyramid is occupied by a phenolic O atom from the neighbouring chelate at an apical distance of 2.623 (2) \AA, building a dimeric structural unit in which the copper(II) ions are magnetically equivalent. The dimeric moieties in the crystal packing are tilted with respect to each other leading to a distorted antiferrodistortive ordering.

^[\dagger Alternative name: bis- μ-[2-(2-hydroxybenzylideneamino)-2-methyl-propionato- $\left.O, N, O^{\prime}: O\right]$-bis[(imidazole- N^{3})copper(II)].]

Comment

Copper(II) complexes with tridentate Schiff base dianions of the N-salicylideneaminoacidato type (TSB^{2-}) represent a relatively simple model for studies of cooperative bonding effects, which can be investigated by electron paramagnetic resonance (EPR) spectroscopy. In these complexes, which are of the general type $[\mathrm{Cu}(\mathrm{TSB})(L)]_{n}$ (Warda, 1994), three donor atoms (O, N and O) of the Schiff base and a fourth donor atom from the neutral ligand L (N, O or S) normally define the base of a square pyramid. For isolated (monomeric) structures, the copper coordination can be square planar or square pyramidal when a neutral donor ligand is located at the apical site ($n=$ 1; Ueki, Ashida, Sasada \& Kakudo, 1969; Warda, Friebel, Sivý, Plesch \& Švajlenová, 1996); $n=4$ is found in the case of (4-ethylpyridine)(N-salicylideneglycinato)copper(II) (Warda, 1997). Polymeric structures $(n=\infty)$ are generally achieved when the apical position is occupied by a carboxylic O atom from an adjacent molecule to make infinite zigzag chains (Warda, Friebel, Sivý, Plesch \& Bláhová, 1997). If a phenolic O atom from a neighbouring molecule is apically coordinated, dimeric structures are formed ($n=2$; Warda, 1994). In this communication, we report on such a case.

(I)

The molecule is characterized by a square-pyramidal $\mathrm{Cu}^{\text {II }}$ coordination with the tridentate Schiff base N -salicylidene- α-aminoisobutyrato dianion and a monodentate ligand in the basal plane (imidazole). The involvement of the phenolic O atom of a neighbouring molecule at the apical site, with a $\mathrm{Cu}-\mathrm{Ol}^{\mathrm{i}}$ distance of 2.623 (2) \AA, leads to a dimeric structure [symmetry code: (i) $2-x, 1-y,-z]$. This distance is comparable with the corresponding bond [2.591 (3) Å] in (imidazole)[N-salicylidene-(R, S)-alaninato]copper(II) (Warda, 1994).

The dimers of the title compound are linked by N3$\mathrm{H} 31 \cdots \mathrm{O} 3$ hydrogen bonds to form a ribbon structure parallel to the x axis (Fig. 2).
It has been found (Warda, 1994) that EPR patterns display a coupled g tensor (non-molecular), indicating a distorted antiferrodistortive ($90>2 \gamma>45^{\circ}$) ordering, with a tilting angle of $2 \gamma=66^{\circ}$ (EPR result), when the distance between the differently oriented paramagnetic centres is shorter than the critical distance of $8.3 \AA$; these features are found in the title compound, with a

[^0]: \dagger Site occupancy $=0.734$ (4).

